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Abstract

The wormhole is a hypothetical feature of spacetime that connects distant regions of the uni-
verse (or even distinct universes) together. While the concept has been around since the early
years of general relativity theory, a thorough analysis of their feasibility for human traversal was
not attempted until the mid 1980s. It turns out that traversable wormholes are possible under the
laws of GR if one allows so-called exotic matter with negative energy, which is usually considered
unrealistic but not necessarily impossible. One common objection is that wormholes can link re-
gions that are distant in time as well as space, which has the potential to introduce paradoxes.
This essay gives a mathematical description of some a hypothetical wormhole and reviews the
literature regarding the aforementioned issues.

Natural units with c,G = 1 are used throughout.

1 Introduction

The idea of a wormhole was �rst considered by Ludwig Flamm [1] less than a year after Einstein
published his theory of General Relativity (GR). Einstein's �eld equation

Rij −
1

2
Rkkgij = 8πTij (1)

places no restriction on the topology of spacetime, it simply relates the geometry with energy and
momentum. Flamm realised that it therefore seems just as valid to base spacetimes on arbitrary
di�erentiable 4-manifolds as it is to use the usual R4, which allows for the insertion of topological
�handle� joining two distant parts of the universe. By adjusting the metric on the handle, one can
then make the distances measured via the two routes di�erent, giving us what has come to be known
as a wormhole.
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Figure 1: A wormhole between two distant locales of the same universe. In the vicinity of the wormhole,
the fact that there is a �long way around� is irrelevant; the geometry is the same as in a wormhole
between two di�erent universes. Note that the folding of the surface is an extrinsic property of this
particular embedding that allows us to depict the situation conveniently; the actual geometry is �at
in that region. Image from [4].

2 The Einstein-Rosen Bridge

An explicit example of a wormhole metric was investigated by Einstein and Rosen in their 1935 paper
[2] and came to be known as the Einstein-Rosen bridge. The Einstein-Rosen bridge connects two
distinct universes; but for most purposes, we can easily adapt an inter-universe wormhole metric by
�joining up� the two universes and smoothing out the metric in between (see Figure 1).

Interestingly, the metric used was exactly that of the Schwartzchild solution, which describes
the spacetime outside a spherically symmetric mass m. In the usual spherical coordinates, the
Schwartzchild metric

g = − (1− 2m/r) dt2 +
1

1− 2m/r
dr2 + r2dΩ2 (2)

is singular at r = 2m, and is often only considered on (t, r, θ, ϕ) | r > 2m ' R2 × S2. (In the case
where the radius of the generating mass is smaller than r = 2m, we have an event horizon at r = 2m
and r < 2m represents the interior of a black hole.) By changing the radial coordinate to u =

√
r − 2m

and re�ecting the metric to negative u, one �nds

g = − u2

u2 + 2m
dt2 + 4

(
u2 + 2m

)
du2 +

(
u2 + 2m

)2
dΩ2. (3)

This is now well-de�ned and smooth for all values of (t, u, θ, ϕ), so the singularity at u = 0 in the old
coordinates is simply a property of those coordinates. (There is a genuine singularity at r = 0, but
our new coordinates do not cover this region.) We can now interpret the metric as a wormhole (see
Figure 2 for a visualisation). Noting that dr = 2udu, we �nd that in the limit u→ ±∞ where we take
u = ±

√
r − 2m the metric tends towards the �at metric

η = −dt2 + dr2 + r2dΩ2; (4)

i.e. we have two universes that asymptotically look like Minkowski space, joined together at the throat
r = 2m. Because we actually have two separate coordinate charts for positive and negative u, we
cannot use these coordinates to draw conclusions about geodesics crossing u = 0. (The fact that
det g = 0 at u = 0 is also a hint that things are not as regular there as they seem.) A complete
analysis [4, Ch 31] using the Kruskal-Szekeres coordinates (which cover the entire extended geometry,
including both universes and both interior regions) shows that there are in fact no geodesics that pass
from one universe to the other. Any geodesic that crosses the horizon ends up in the r < 2m portion
of the geometry and ultimately terminates at the singularity r = 0; so we say that this wormhole is
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Figure 2: Embedding diagram of Einstein-Rosen bridge. We take a slice of the spacetime t = 0, θ = π/2

which gives a 2-manifold with metric 4
(
u2 + 2m

)
du2 +

(
u2 + 2m

)2
dϕ2, which is then isometrically

embedded into R3 with cylindrical coordinates via the map (u, ϕ) 7→
(
u2 + 2m,ϕ,

√
8mu

)
. This �gure

uses m = 1, u ∈ (−8, 8), ϕ ∈ [0, 2π). Angles and lengths measured on the surface are the same as
those in the full spacetime.

not traversable. Two travelers from di�erent universes could brie�y meet inside the event horizon, but
they could never send a message back and would be promptly crushed.

3 The Morris-Thorne Wormhole

The term wormhole was coined by Misner and Wheeler in 1957 [5], and the concept quickly became a
popular method of travel in science �ction - they are a convenient device to allow rapid interstellar travel
without neglecting the universal speed limit c. Despite this, it was not until 1985 that real scienti�c
interest arose in the possibility of traversable wormholes. While writing his novel Contact, Carl Sagan
consulted physicists Kip Thorne and Michael Morris for help depicting a believable wormhole, and
they found a remarkably simple example of a traversable wormhole consistent with almost all of GR
[3]. They started with the assumption of spherical symmetry and two asymptotic �at regions (both
possessed by the Einstein-Rosen bridge discussed above), and constructed a metric with geodesics
passing from universe to the other in reasonable timescales.

Similarly to the Einstein-Rosen bridge, the Morris-Thorne metric uses coordinates t, l, ϕ, θ on R2×
S2. The coordinate l will measure proper radial distance from the throat (with l < 0 in one universe),
but it is more convenient to construct the metric using the coordinate r where 2πr is the circumference
of a circle ϕ 7→ (t0, r, ϕ, π/2) . Assuming spherical and time-translation symmetry, we write down the
general Morris-Thorne metric

g = −e2Φdt2 +
1

1− b/r
dr2 + r2dΩ2 (5)

where Φ, b are adjustable functions of r only. To achieve asymptotic �atness, we need this to converge
to η as r →∞; so we have constraints

lim
r→∞

Φ (r) = 0 lim
r→∞

b (r)

r
= 0. (6)
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Figure 3: Embedding diagram for Morris-Thorne wormhole with Φ (r) = 0, b (r) = 1/r. Slice
taken is t = 0, θ = π/2. Cylindrical embedding map is (r, ϕ) 7→ (r = cosh z, ϕ, z) where z (r) =
ln
(
r +
√
r2 − 1

)
. Yellow line shows a geodesic passing from one universe to another.

We can recover the Schwartzchild metric by setting b (r) = 2m,Φ (r) = 1
2 ln (1− 2m/r). We will

investigate the simple but fruitful example Φ (r) = 0, b (r) = b20/r, which yields l2 = r2 − b20 and
therefore in coordinates (t, l, θ, ϕ) the metric can be written

g = −dt2 + dl2 +
(
l2 + b20

)
dΩ2. (7)

Figure 3 shows that the geometry appears qualitatively similar to that of the Einstein-Rosen bridge. In
this case, however, we have a valid global coordinate chart with no degeneracies, so what we see is the

genuine spacetime. This means that the trajectories τ 7→ x (τ) = (γτ, l0 − γvτ, 0, 0) , γ =
(
1− v2

)−1/2

are geodesics that start in one universe at radial position l0 and travel through the wormhole to the
other universe. To see this, note that gtt, gll have no dependence on t, l, so all the relevant Christo�el
symbols vanish and therefore the acceleration is simply −γ (∂tv) ∂l = 0. Assuming no forces will act
on a particle following this trajectory, we can therefore send matter through the wormhole. For it to
truly be deserving of the name traversable we would also want a human to be able to comfortably
travel through it in a reasonable amount of time; so we have a few more requirements. Firstly, the
gravitational and tidal accelerations felt by the traveler should be small so that the traveler is not
crushed or spaghetti�ed. For a traveler freefalling on a geodesic, the gravitational acceleration is zero,
so there is no issue here. The relative acceleration between x and a geodesic separated from it by a
small vector δx is approximately [4, Ch 11]

Rẋ (δx) = R (δx, ẋ) ẋ = Rijklẋ
jδxkẋl. (8)

In this case, there are only a few non-zero curvature components. Switching to the local reference

frame of a stationary observer (i.e. the orthonormal frame Ei = |gii|−1/2
∂i), they are [3]

Rθϕθϕ = −Rlθlθ = −Rlϕlϕ =
b20

(b20 + l2)
2 (9)

and the other components that can be derived from these via the Riemann tensor's symmetries. The
velocity of the traveler in this frame is

ẋ = γ (∂t − v∂l) = γ (Et − vEl) (10)
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and therefore the tidal acceleration is

Rθlθl
(
ẋl
)2
δxθEθ +Rϕlϕl

(
ẋl
)2
δxϕEϕ = − b20

(b20 + l2)
2 γ

2v2
(
δxθEθ + δxϕEϕ

)
. (11)

This has a maximum at l = 0, where we �nd (for someone 2m tall laying perpendicular to the radial
direction, which maximises the tidal force)

atide = 2m γ2v2 (12)

and therefore we can decrease the tidal acceleration below any given threshold by decreasing the
velocity.

We now have a satisfactory geometry for a wormhole, so the outstanding question is to ask what
matter distribution generates this geometry. Working in the static orthonormal frame as before and
starting from Equation 9, we �nd the non-zero components of the Ricci tensor are

Rθθ = Rθϕθϕ +Rθlθl = 0 (13)

Rll = Rlθlθ +Rlϕlϕ = −2
b20

(b20 + l2)
2 (14)

Rϕϕ = Rϕθϕθ +Rϕlϕl = 0. (15)

The scalar curvature is therefore R = Rkk = −2b20/
(
b20 + l2

)2
and so using Equation 1 we �nd we have

a diagonal stress-energy tensor:

−Ttt = −Tll = Tϕϕ = Tθθ =
1

8π

b20

(b20 + l2)
2 . (16)

4 Exotic Matter

We've now struck our �rst real problem with the Morris-Thorne wormhole: the energy density Ttt is
negative. While we have only studied a particular example here, the full analysis [3] shows that for
any choice of b,Φ satisfying (6), there is some observer who sees Ttt < 0, so this is a generic feature of
Morris-Thorne wormholes. Intuitively, the space needs to be negatively curved in order to smoothly
transition from the throat to the asymptotically �at universe, so the �eld equations necessitate exotic
matter with negative mass to hold it open. While this matter is distributed across all of space (though
concentrated near the wormhole) in our simple example, one can �nd b,Φ that give safely traversable
wormholes such that T is zero outside of a thin spherical shell [3].

Because Morris and Thorne assumed spherical symmetry in the geometry, we have spherical sym-
metry in the distribution of exotic matter; so anyone traversing the wormhole will necessarily pass
through it. While the interactions of the exotic matter with other matter is unknown, it is likely that
this would be undesirable. By discarding spherical symmetry, Matt Visser showed [6] the existence of
a wormhole metric where travelers do not come in contact with the exotic matter, and in addition do
not feel any gravitational or tidal forces.

While the �eld equations and principle of geodesic motion are perfectly consistent in a universe with
negative energy, it is conventional to impose some restrictions on the energy in order to get realistic
results. Normally one assumes at least the weak energy condition, which states that the energy density
is always measured as non-negative by every observer, i.e. T (V, V ) ≥ 0 for every timelike vector �eld
V . This is more important than just getting rid of the troublesome concept of negative mass - much
of black hole thermodynamics relies on the weak energy condition [1]; so many would dismiss solutions
of (1) that violate it as non-physical.

All is not lost, however - quantum �eld theory (QFT) o�ers a tantalising possibility in the form
of the Casimir e�ect. If two conducting planes are placed parallel to each other at a distance L, the
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boundary conditions suppress electromagnetic �eld modes with wavelengths λ > 2L. As the plates
are brought closer together, these excluded modes increase in energy, and one �nds that the vacuum
energy between the plates is lower than that of free space. Because the vacuum energy of free space is
conventionally taken as the zero point, this means that there is essentially a negative energy density
between the plates. The Casimir e�ect has been experimentally validated [7], and is therefore very
good evidence that the weak energy condition does not hold in general. While the Casimir e�ect itself
is almost certainly not practical for supporting a wormhole, it hints that QFT (or better, a uni�ed
theory of quantum gravity) can admit negative energy densities. Whether or not usable exotic matter
exists in the universe (or can be manufactured) is another question entirely - there is certainly no
empirical evidence for such materials.

5 The Chronology Problem

One common argument against the existence of wormholes is that they introduce time travel paradoxes.
One can easily create a single-universe geometry (as in Figure 1) with a wormhole whose two exits are
attached at distant points in time. One can �nd closed timelike curves (CTCs; i.e. periodic particle
trajectories) that pass through the wormhole to the past, and then travel back to the future the long
way. This introduces the possibility of a given initial condition violating itself when it propagates
around the loop, as in the classic example of a man killing his own grandfather. This is not, however,
particular to wormholes: there are many known spacetimes with CTCs, often with otherwise reasonable
conditions (i.e. no violation of energy conditions) [9]

Because a full theory of quantum gravity has not yet been developed, the chronology problem has
a number of resolutions [1], from conservative to radical:

• Conject that our particular universe is globally hyperbolic, implying no CTCs and therefore that
Morris-Thorne wormholes do not exist. (It can be shown [10] that in the case of classical GR,
any Morris-Thorne wormhole can be manipulated into a con�guration that contains a CTC.)
This is often known as the boring physics conjecture.

• Hawking's chronology protection conjecture: assume that quantum mechanics will (via some
yet to be determined mechanism) intervene to forbid the existence of macroscopic CTCs. While
some have attempted to prove/disprove this conjecture using the theory of semiclassical quantum
gravity, these analyses are possibly outside the regime where such an approximation is valid [11];
so a full theory of quantum gravity is required before this can really be investigated. Depending
on the nature of the mechanism, this could possibly preclude the existence of wormholes, but
may admit them as long as they do not contain CTCs.

• The Novikov consistency conjecture: accept time travel, and simply require that it be consistent,
i.e. conjecture that the universe will only accommodate globally consistent solutions. From
one point of view, this does not modify our laws of physics at all: a non-consistent time loop
would result in a discontinuity of the metric or some �eld, meaning it would no longer be a
solution to the governing PDEs. However, this may remove the locality of the physical laws. We
can take the state (i.e. the spatial topology, the metric and any auxiliary �elds) on one local
spacelike hypersurface {t0}×U and use it as initial conditions to �nd a unique local solution on
[t0, t0 + ε)×U . The Novikov conjecture implies that in a spacetime where {t0 + τ}×U connects
back up with {t} × U via geodesics, such a solution may not in fact be correct if it does not
extend to a smooth global solution.

• The radical rewrite conjecture: discard altogether the requirement of a single consistent timeline
and allow multiple branching timelines. This requires a fundamental modi�cation of our theory,
even at the macroscopic level. One possible model for this is the extension of general relativity
to a certain class of non-Hausdor� manifolds, allowing a �single-sheeted� universe to split into
two [1].
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The last two conjectures would admit wormholes - under the consistency conjecture they would be
exactly as described earlier, but after radical rewrite they would take somewhat of a di�erent form to
�t the new model.

6 Conclusions

Traversable wormholes certainly exist as solutions to the classical equations of general relativity if
and only if we allow the violation of the energy conditions. The exotic matter required to do so is
unlike anything yet discovered or manufactured, but is potentially possible due to quantum e�ects.
The relationship between wormholes and time travel depends entirely on which of the four chronology
conjectures is true - quantum gravity may intervene to rule them out entirely, allow them while barring
time travel or place no restriction upon them at all. Ultimately, the feasibility of traversable wormholes
cannot be determined until we either have a validated theory of quantum gravity, or direct empirical
evidence.
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